Automatic Leptonic Tensor Calculation for Beyond the Standard

Model (BSM) Theories

Diego Lopez Gutierrez^{1,2}, Joshua Isaacson² — ¹Macalester College, ²Fermilab

FERMILAB-POSTER-20-103-T

Introduction

- Colossal data output from neutrino experiments (e.g. DUNE, T2HK) will require testing of several BSM theories.
- Manual implementation of BSM theories in event generators is time-consuming and prone to errors.
- For neutrino events, we can always decompose the squared amplitude ($|M|^2$) into a hadronic ($H^{\mu\nu}$) and a leptonic ($L_{\mu\nu}$) tensor: $|M|^2 = H^{\mu\nu}L_{\mu\nu}$.
- $H^{\mu\nu}$ is complicated to calculate but event generators are good at doing it. Separation of amplitude into $H^{\mu\nu}$ and $L_{\mu\nu}$ allows easy calculation of effects of BSM theories on $L_{\mu\nu}$.
- Develop a program to automatically calculate leptonic tensors of BSM theories:
- Requires only BSM Lagrangian.
- Can be easily interfaced to several neutrino event generators.

Methods

- Universal FeynRules Output (UFO) files:
- Use BSM Lagrangian to calculate Feynman vertices.
 Output in Python.
- Lark package:
- Parser for string outputs of UFO files.
- Berends-Giele algorithm:
- Recursive break down of Feynman diagrams.
- Allows recycling of diagrams' components. Highlyefficient.
- BG Equations: Current $J_i(\pi)$ and amplitude $M(\pi)$ for set of particles π . Base case for $J_i(\pi)$ is the particle's wavefunction.

$$J_i(\pi) = \underbrace{P_i(\pi)}_{V_i^{j,k}} \underbrace{\sum_{P_2(\pi)} S(\pi_1,\pi_2) V_i^{j,k}(\pi_1,\pi_2) J_j(\pi_1) J_k(\pi_2)}_{\text{Normal operator term}}$$
 Symmetry factor Adjacent currents Interaction vertex Sum over all possible vertices and permutations
$$M(\pi) = \underbrace{J_n(n)}_{\text{Current for } n} \cdot \underbrace{\frac{1}{P_{\overline{n}}(\pi \backslash n)}}_{\text{Current for } \overline{n}}$$
 Current for \overline{n} Reversed particle Propagator term properties

Results and Discussion

- Validation results of squared amplitude of three SM processes $(e^+e^- \to \mu^+\mu^-, e^-\mu^- \to e^-\mu^-, e^+e^- \to e^+e^-)$ plotted versus $\cos(\theta)$ and for randomly generated azimuthal angles ϕ .
- Our results show percentage deviations of order 10^{-14} with respect to analytic calculations of our SM processes.
- Work can be extended to more complex processes and to BSM theories.
- To illustrate how $|M|^2$ can be split into $H^{\mu\nu}$ and $L_{\mu\nu}$, we perform the calculation for $e^-N \to e^-N$, with N being an atomic nucleus:
- 1. Consider simpler case $e^-\mu^- \to e^-\mu^-$ with Feynman diagram shown in 2). Diagram is composed by upper e^- part and lower μ^- part.
- 2. Label e_{in}^- : 1, μ_{in}^- : 2, e_{out}^- : 3, μ_{out}^- : 4. Matrix element $|M|^2$ of $e^-\mu^-$ scattering given by:

$$= \frac{2e^{2}}{(p_{1}-p_{3})^{2}} \cdot \left[p_{3\mu}p_{1\nu} + p_{3\nu}p_{1\mu} + (m_{e}^{2}-p_{1}\cdot p_{3})g_{\mu\nu} - i\epsilon_{\mu\nu\alpha\beta}p_{1}^{\alpha}p_{3}^{\beta} \right]$$

$$L_{\mu\nu,e^{-}}$$

$$\frac{2e^{2}}{(p_{2}-p_{4})^{2}} \cdot \left[p_{4}^{\mu}p_{2}^{\nu} + p_{4}^{\nu}p_{2}^{\mu} + (m_{\mu}^{2}-p_{2}\cdot p_{4})g^{\mu\nu} + i\epsilon^{\mu\nu\alpha\beta}p_{2\alpha}p_{4\beta} \right]$$

$$L_{\mu^{-}}^{\mu\nu}$$

3. Similarly, matrix element $|M|^2$ of e^-N scattering contains the upper e^- part and, thus, $L_{\mu\nu,e^-}$. Then:

$$|M|^2 = L_{\mu\nu,e} - H_N^{\mu\nu}$$

Where $H_N^{\mu\nu}$ is the hadronic tensor. Depending on the energy, N might be the nucleus itself, a nucleon or a parton inside a nucleon.

Conclusion and Future Steps

- Validation results are promising, proving our method works for SM processes.
- Convert amplitude into leptonic tensor to be interfaced with event generators.
- Perform tests in DIS events as well as with some BSM theories using leptonic tensor.

Comparison of our computational and analytic squared amplitudes for $e^+e^- \to \mu^+\mu^-$ as a function of $\cos(\theta)$ for a (random) value of $\phi = 0.34 \, \mathrm{rad}$.

Comparison of our computational and analytic squared amplitudes for $e^-\mu^- \to e^-\mu^-$ as a function of $\cos(\theta)$ for a (random) value of $\phi=2.67~\mathrm{rad}$.

Comparison of our computational and analytic squared amplitudes for $e^+e^- \rightarrow e^+e^-$ as a function of $\cos(\theta)$ for a (random) value of $\phi = 0.00 \, \mathrm{rad}$.